Меню

Способы защиты от перенапряжений в электрических сетях

Способы защиты от перенапряжений в электрических сетях

Способы защиты от перенапряжений в электрических сетях Перенапряжение – это ненормальный режим работы в электрических сетях, который заключается в чрезмерном увеличении значения напряжения выше допустимых значений для участка электрической сети, который является опасным для элементов оборудования данного участка электрической сети.

Изоляция оборудования электроустановок рассчитана на нормальную работу при определенных значениях напряжения, в случае наличия перенапряжения, изоляция приходит в негодность, что приводит к повреждению оборудования и представляет опасность для обслуживающего персонала или людей, которые находятся в непосредственной близости к элементам электрических сетей.

Перенапряжения могут быть двух видов – природными (внешними) и коммутационными (внутренними). Природные перенапряжения – это явление атмосферного электричества. Коммутационные перенапряжения возникают непосредственно в электрических сетях, причинами их проявления могут быть большие перепады нагрузки на линиях электропередач, феррорезонансные явления, послеаварийные режимы работы электрических сетей.

Способы защиты от перенапряжений

В электроустановках для защиты оборудования от возможных перенапряжений применяют такое защитное оборудование, как разрядники и ограничители перенапряжения нелинейные (ОПН) .

ОПН

Основным конструктивным элементом данного защитного оборудования является элемент с нелинейными характеристиками. Характерная особенность данных элементов заключается в том, что они изменяют свое сопротивление в зависимости от приложенного к ним значения напряжения. Рассмотрим вкратце принцип работы данных защитных элементов.

Разрядник или ограничитель перенапряжения присоединяется к шине рабочего напряжения и к контуру заземления электроустановки. В нормальном режиме, то есть, когда сетевое напряжение находится в пределах допустимых значений, разрядник (ОПН) имеет очень большое сопротивление, и он не проводит напряжение.

В случае возникновения перенапряжения на участке электрической сети сопротивление разрядника (ОПН) резко падает, и данный защитный элемент проводит напряжение, способствуя утечке возникшего скачка напряжения в заземляющий контур. То есть на момент перенапряжения разрядник (ОПН) осуществляет электрическое соединение провода с землей.

Разрядники и ОПН устанавливаются для защиты элементов оборудования на территории распределительных устройств электроустановок, а также в начале и в конце линий электропередач напряжением 6 и 10 кВ, которые не оборудованы грозозащитным тросом.

ограничительперенапряжения

Для защиты от природных (внешних) перенапряжений на металлических и железобетонных конструкциях открытых распределительных устройств устанавливают стержневые молниеотводы . На высоковольтных линиях напряжением 35 кВ и выше применяют грозозащитный трос (тросовый молниеотвод), который располагается в верхней части опор линий электропередач на всей их протяженности, соединяясь с металлическими элементами линейных порталов открытых распределительных устройств подстанций. Молниеотводы притягивают атмосферные заряды на себя, тем самым предупреждая их попадания на токоведущие части электрооборудования электроустановок.

Для обеспечения надежной защиты оборудования электроустановок от возможных перенапряжений, разрядники и ограничители перенапряжений, как и все элементы оборудования, должны проходить периодические ремонты и испытания. Также необходимо в соответствии с установленной периодичностью проверять сопротивление и техническое состояние заземляющих контуров распределительных устройств.

Защита от перенапряжений в высоковольтных электрических цепях

Перенапряжения в низковольтных сетях

Явление перенапряжений также характерно и для низковольтных сетей напряжением 220/380 В. Перенапряжения в низковольтных сетях приводят к выходу из строя не только оборудования данных электрических сетей, но и электроприборов, которые включены в сеть.

Для защиты от перенапряжений в домашней электропроводке используют реле напряжения или стабилизаторы напряжения, источники бесперебойного питания, в которых предусмотрена соответствующая функция. Также существуют модульные устройства защиты от импульсных перенапряжений, предназначенные для установки в домашний распределительный щиток.

УЗИП

В низковольтных распределительных устройствах предприятий, электроустановок, ЛЭП для защиты от перенапряжений применяют специальные ограничители перенапряжений по принципу работы схожие с высоковольтными ОПН.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Правила технической эксплуатации электроустановок потребителей

Раздел 2. Электрооборудование и электроустановки общего назначения

Глава 2.8. Защита от перенапряжений

2.8.1. Электроустановки Потребителей должны иметь защиту от грозовых и внутренних перенапряжений, выполненную в соответствии с требованиями правил устройства электроустановок. ¶

Линии электропередачи, ОРУ, ЗРУ, распределительные устройства и подстанции защищаются от прямых ударов молнии и волн грозовых перенапряжений, набегающих с линии электропередачи. Защита зданий ЗРУ и закрытых подстанций, а также расположенных на территории подстанций зданий и сооружений (маслохозяйства, электролизной, резервуаров с горючими жидкостями или газами и т.п.) выполняется в соответствии с установленными требованиями. ¶

2.8.2. При приемке после монтажа устройств молниезащиты Потребителю должна быть передана следующая техническая документация: ¶

  • технический проект молниезащиты, утвержденный в соответствующих органах, согласованный с энергоснабжающей организацией и инспекцией противопожарной охраны;
  • акты испытания вентильных разрядников и нелинейных ограничителей напряжения до и после их монтажа;
  • акты на установку трубчатых разрядников;
  • протоколы измерения сопротивлений заземления разрядников и молниеотводов.

2.8.3. У Потребителей должны храниться следующие систематизированные данные: ¶

  • о расстановке вентильных и трубчатых разрядников и защитных промежутках (типы разрядников, расстояния до защищаемого оборудования), а также о расстояниях от трубчатых разрядников до линейных разъединителей и вентильных разрядников;
  • о сопротивлении заземлителей опор, на которых установлены средства молниезащиты, включая тросы;
  • о сопротивлении грунта на подходах линий электропередачи к подстанциям;
  • о пересечениях линий электропередачи с другими линиями электропередачи, связи и автоблокировки, ответвлениях от ВЛ, линейных кабельных вставках и о других местах с ослабленной изоляцией.
  • На каждое ОРУ должны быть составлены очертания защитных зон молниеотводов, прожекторных мачт, металлических и железобетонных конструкций, в зоны которых попадают открытые токоведущие части.

2.8.4. Подвеска проводов ВЛ напряжением до 1000 В (осветительных, телефонных и т.п.) на конструкциях ОРУ, отдельно стоящих стержневых молниеотводах, прожекторных мачтах, дымовых трубах и градирнях и подводка этих линий к указанным сооружениям, а также подводка этих линий к взрывоопасным помещениям не допускаются. ¶

Указанные линии должны выполняться кабелями с металлической оболочкой в земле. Оболочки кабелей должны быть заземлены. Подводка линий к взрывоопасным помещениям должна быть выполнена с учетом требований действующей инструкции по устройству молниезащиты зданий и сооружений. ¶

2.8.5. Ежегодно перед грозовым сезоном должна проводиться проверка состояния защиты от перенапряжений распределительных устройств и линий электропередачи и обеспечиваться готовность защиты от грозовых и внутренних перенапряжений. ¶

У Потребителей должны регистрироваться случаи грозовых отключений и повреждений ВЛ, оборудования РУ и ТП. На основании полученных данных должна проводиться оценка надежности грозозащиты и разрабатываться в случае необходимости мероприятия по повышению ее надежности. ¶

При установке в РУ нестандартных аппаратов или оборудования необходима разработка соответствующих грозозащитных мероприятий. ¶

2.8.6. Вентильные разрядники и ограничители перенапряжений всех напряжений должны быть постоянно включены. ¶

В ОРУ допускается отключение на зимний период (или отдельные его месяцы) вентильных разрядников, предназначенных только для защиты от грозовых перенапряжений в районах с ураганным ветром, гололедом, резкими изменениями температуры и интенсивным загрязнением. ¶

2.8.7. Профилактические испытания вентильных и трубчатых разрядников, а также ограничителей перенапряжений должны проводиться в соответствии с нормами испытаний электрооборудования (Приложение 3). ¶

2.8.8. Трубчатые разрядники и защитные промежутки должны осматриваться при обходах линий электропередачи. Срабатывание разрядников отмечается в обходных листах. Проверка трубчатых разрядников со снятием с опор проводится 1 раз в 3 года. ¶

Верховой осмотр без снятия с опор, а также дополнительные осмотры и проверки трубчатых разрядников, установленных в зонах интенсивного загрязнения, должны выполняться в соответствии с требованиями местных инструкций. ¶

Ремонт трубчатых разрядников должен выполняться по мере необходимости в зависимости от результатов проверок и осмотров. ¶

2.8.9. Осмотр средств защиты от перенапряжений на подстанциях должен проводиться: ¶

  • в установках с постоянным дежурством персонала — во время очередных обходов, а также после каждой грозы, вызвавшей работу релейной защиты на отходящих ВЛ;
  • в установках без постоянного дежурства персонала — при осмотрах всего оборудования.
Читайте также:  DEXP F40D7300C SPI service manual 1 0 0

2.8.10. На ВЛ напряжением до 1000 В перед грозовым сезоном выборочно по усмотрению ответственного за электрохозяйство Потребителя должна проверяться исправность заземления крюков и штырей изоляторов, установленных на железобетонных опорах, а также арматуры этих опор. При наличии нулевого провода контролируется также зануление этих элементов. ¶

На ВЛ, построенных на деревянных опорах, проверяются заземление и зануление крюков и штырей изоляторов на опорах, имеющих защиту от грозовых перенапряжений, а также там, где выполнено повторное заземление нулевого провода. ¶

2.8.11. В сетях с изолированной нейтралью или с компенсацией емкостных токов допускается работа воздушных и кабельных линий электропередачи с замыканием на землю до устранения повреждения. ¶

При этом к отысканию места повреждения на ВЛ, проходящих в населенной местности, где возникает опасность поражения током людей и животных, следует приступить немедленно и ликвидировать повреждение в кратчайший срок ¶

При наличии в сети в данный момент замыкания на землю отключение дугогасящих реакторов не допускается. В электрических сетях с повышенными требованиями по условиям электробезопасности людей (организации горнорудной промышленности, торфоразработки и т.п.) работа с однофазным замыканием на землю не допускается. В этих сетях все отходящие от подстанции линии должны быть оборудованы защитами от замыканий на землю. ¶

2.8.12. В сетях генераторного напряжения, а также в сетях, к которым подключены электродвигатели высокого напряжения, при появлении однофазного замыкания в обмотке статора машина должна автоматически отключаться от сети, если ток замыкания на землю превышает 5 А. Если ток замыкания не превышает 5 А, допускается работа не более 2 ч., по истечении которых машина должна быть отключена. Если установлено, что место замыкания на землю находится не в обмотке статора, по усмотрению технического руководителя Потребителя допускается работа вращающейся машины с замыканием в сети на землю продолжительностью до 6 ч. ¶

2.8.13. Компенсация емкостного тока замыкания на землю дугогасящими реакторами должна применяться при емкостных токах, превышающих следующие значения: ¶

Источник

Инструкция средств защиты от перенапряжений

ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ
СРЕДСТВ ЗАЩИТЫ ОТ ПЕРЕНАПРЯЖЕНИЙ

Срок действия с 27.08.85
до 27.08.90*
__________________
* О дате окончания действия см. ярлык «Примечания». —
Примечание изготовителя базы данных.

РАЗРАБОТАНО Производственным объединением по наладке, совершенствованию технологии и эксплуатации электростанций и сетей «Союзтехэнерго»

ИСПОЛНИТЕЛИ Ф.А.Лихачев, В.В.Радченко

УТВЕРЖДЕНО Главным техническим управлением по эксплуатации энергосистем 27.08.85 г.

Заместитель начальника К.М.Антипов

Настоящая Инструкция предназначена для персонала служб изоляции, защиты от перенапряжений и испытаний электрооборудования электростанций и электрических сетей, занимающегося эксплуатацией средств защиты от перенапряжений.

В Инструкцию внесены изменения и дополнения, учитывающие практику эксплуатации современных средств защиты от перенапряжений, требования новых и пересмотренных стандартов и технических условий на конкретные виды и типы средств защиты от перенапряжений.

С выходом настоящей Инструкции отменяется «Инструкция по выбору, монтажу и эксплуатации средств защиты от перенапряжений» (М.: Энергия, 1969).

1. ВЕНТИЛЬНЫЕ РАЗРЯДНИКИ

1.1. Общие указания

1.1.1. Вентильные разрядники являются аппаратами для защиты от грозовых и кратковременных (коммутационных) перенапряжений изоляции электроустановок.

1.1.2. Номинальное напряжение вентильных разрядников, их пробивные и остающиеся напряжения по ГОСТ 16357-83 должны быть согласованы (скоординированы) соответственно с наибольшими рабочими напряжениями и электрической прочностью электрооборудования, нормируемой ГОСТ 1516.1-76.

1.1.3. Вентильные разрядники по ГОСТ 16357-83 предназначены для эксплуатации на открытом воздухе при высоте до 1000 м над уровнем моря.

Климатическое исполнение и категория размещения разрядников должны соответствовать нормальным значениям климатических факторов внешней среды в месте установки в соответствии с требованиями ГОСТ 15150-69.

1.2. Выбор вентильных разрядников

1.2.1. Выбор вентильных разрядников должен производиться в соответствии с классом напряжения, видом защищаемого электрооборудования и места установки.

Для защиты электрооборудования до 1000 В с заземленной и изолированной нейтралью следует применять вентильные разрядники РВН-0,5 и PBH-1.

Для защиты распределительных устройств и трансформаторных подстанций 3,6 и 10 кВ рекомендуется применять как импортные вентильные разрядники, так и отечественные РВП, РВО и РВМ соответственно на классы напряжения 3,6, 10 кВ.

Для защиты вращающихся машин 3,6, 10 кВ необходимо применять разрядники РВРД-3, РВРД-6 и РВРД-10.

Для распределительных устройств и трансформаторов 15-35 кВ должны применяться вентильные разрядники PBC-15, РВС-20, РВС-35, PBM-15, РВМ-20 и РВМ-35.

Для защиты распределительных устройств и трансформаторов 110 кВ должны применяться вентильные разрядники PBC-110 или РВМГ-110.

Для защиты распределительных устройств и трансформаторов 150 и 220 кВ, изоляция которых выполнена в соответствии со значениями испытательных напряжений, указанными в ГОСТ 1516.1-76, следует применять вентильные разрядники РВМГ-150 и РВМГ-220. Изоляцию трансформаторов 150, 220 кВ, выполненную в соответствии со значениями испытательных напряжений, указанных в табл.1 ГОСТ 1516-73 (значения в скобках), следует защищать вентильными разрядниками PBC-150 и РВС-220.

Наименьшие допустимые расстояния в свету между вентильными разрядниками,
от разрядников до токоведущих и заземленных частей подстанции и от разрядников
до постоянных ограждений

Изоляционные расстояния, мм,
для номинального напряжения, кВ

Закрытые распределительные устройства

От разрядников до заземленных частей

Между разрядниками и от разрядников до токоведущих частей других фаз

От разрядников до сплошных ограждений*

От разрядников до сетчатых ограждений*

Открытые распределительные устройства**

От разрядников до заземленных частей или до сетчатых ограждений высотой не менее 2000 мм*

Между разрядниками и от разрядников до токоведущих частей других фаз

От разрядников до сетчатых ограждений высотой до 1600 мм*

* Наименьшие расстояния от элементов вентильных разрядников до сплошных и сетчатых ограждений могут приниматься по действительному значению напряжения на элементах (исходя из равномерного распределения напряжения по элементам разрядника).

** Расстояния приведены для жесткой ошиновки.

Для защиты распределительных устройств и трансформаторов 330 кВ и выше должны применяться вентильные разрядники РВМГ-330 и РВМК-330 кВ и выше. Разрядники РВМК должны устанавливаться в тех случаях, когда кроме грозозащиты требуется защита от коммутационных перенапряжений, например, на присоединениях шунтирующих реакторов.

Для защиты регулировочных обмоток автотрансформаторов следует применять РВ-25, РВЭ-25М, РВМЭ-25.

1.2.2. Основные электрические характеристики вентильных разрядников приведены в приложении 1.

1.2.3. В распределительных устройствах, временно эксплуатируемых на пониженном относительно класса опорной и подвесной изоляции напряжении, класс напряжения вентильных разрядников должен соответствовать классу напряжения силовых трансформаторов и трансформаторов напряжения.

1.2.4. Для защиты изоляции нейтралей обмоток трансформаторов 110-220 кВ вентильные разрядники должны выбираться в соответствии с классом изоляции нейтрали обмотки и наибольшим возможным значением напряжения частоты 50 Гц между нейтралью и землей при однофазном повреждении изоляции в сети (возникновение неполнофазных режимов в сети не учитывается).

Напряжение на нейтрали следует определять по формуле

, (1)

где , , — реактивные сопротивления нулевой и прямой последовательностей сети относительно места повреждения;

— наибольшее фазное рабочее напряжение, кВ.

1.2.5. По условиям гашения дуги сопровождающего тока промышленной частоты номинальное напряжение вентильного разрядника должно быть не менее:

— наибольшего рабочего линейного напряжения для электроустановок до 35 кВ включительно;

— 0,8 для электроустановок 110 кВ и выше.

Кратность наибольших напряжений на неповрежденных фазах (коэффициент замыкания на землю) в месте однофазного повреждения изоляции определяется по формуле

. (2)

1.2.6. Координационный интервал определяется по формуле

%, (3)

где — испытательное напряжение изоляции полным грозовым импульсом по ГОСТ 1516.1-76, кВ;

— остающееся напряжение вентильного разрядника при импульсе тока 5 кА по ГОСТ 16357-83, с длительностью фронта 8 мкс, кВ.

Разрядники в нейтралях обмоток трансформаторов должны выбираться на основе координации испытательных напряжений изоляции с остающимися напряжениями разрядников при наибольших возможных в данной схеме импульсных токах, как правило, не больших 1000 А (вместо принятой координации при импульсе тока 5 кА).

Читайте также:  Безналичный плат ж для юридических лиц

При защите вращающихся машин остающееся напряжение вентильных разрядников должно соответствовать волне импульсного тока 3 кА с длиной фронта 8 мкс (по ГОСТ 16357-83).

1.2.7. Области применения вентильных разрядников приведены в приложении 2.

1.3. Меры безопасности

1.3.1. Работы по установке, эксплуатации и испытанию вентильных разрядников должны производиться с соблюдением «Правил техники безопасности при эксплуатации электроустановок» *(М.: Энергоиздат, 1982).

* На территории Российской Федерации действуют «Межотраслевые Правила по охране труда (правила безопасности) при эксплуатации электроустановок» (ПОТ Р М-016-2001, РД 153-34.0-03.150-00), здесь и далее по тексту. — Примечание изготовителя базы данных.

1.3.2. Работы, выполняемые с применением грузоподъемных механизмов, должны производиться в соответствии с «Правилами устройства и безопасной эксплуатации грузоподъемных кранов»* (М.: Металлургия, 1981).

* На территории Российской Феджерации дествуют «Правилами устройства и безопасной эксплуатации грузоподъемных кранов» (ПБ 10-382-00), утвержденные постановлением Госгортехнадзора России от 31.12.99 N 98, здесь и далее по тексту. — Примечание изготовителя базы данных..

1.4. Порядок установки

1.4.1. Место установки вентильных разрядников в распределительных устройствах должно выбираться в соответствии с требованиями к наибольшим допустимым расстояниям от вентильных разрядников до защищаемого оборудования, указанными в Правилах устройства электроустановок. Раздел IV. Издание шестое (М.: Энергоатомиздат, 1985).

1.4.2. При выборе места установки должно учитываться следующее:

— вентильные разрядники должны устанавливаться возможно ближе к основному оборудованию (вращающиеся машины, силовые трансформаторы);

— при всех возможных схемах коммутации вся изоляция распределительного устройства должна входить в зону защиты вентильных разрядников;

— между автотрансформаторами и вентильными разрядниками, предназначенными для защиты их изоляции, не должно быть (по схеме) коммутационных аппаратов (выключателей, разъединителей);

— удобство осмотров и эксплуатационных испытаний.

1.4.3. Присоединение вентильных разрядников к ошиновке подстанции в зависимости от места их установки должно выполняться:

— к сборным шинам распределительного устройства — через разъединители, общие с трансформаторами напряжения или специально устанавливаемые;

— к ошиновке автотрансформаторов и трансформаторов — ответвлениями без разъединителей.

1.4.4. Способы установки многоэлементных разрядников (одноколонковый, двухколонковый) должны соответствовать требованиям завода-изготовителя. Изменение способа установки допускается только по согласованию с заводом.

1.4.5. В открытых распределительных устройствах вентильные разрядники должны устанавливаться на основаниях-фундаментах или на конструкциях высотой не менее 300 мм от уровня планировки подстанции с учетом требований защиты разрядников от ливневых вод. Минимальная высота основания для вентильных разрядников, присоединяемых к ошиновке без разъединителей, должна приниматься с учетом высоты снежного покрова.

1.4.6. Разрядники, у которых нижняя кромка фарфоровой покрышки расположена над уровнем планировки подстанции на высоте не менее 2,5 м, должны устанавливаться без ограждений. При меньшей высоте кромки покрышки разрядники должны иметь постоянное ограждение.

1.4.7. Расстояния в свету между разрядниками или от разрядников до заземленных или находящихся под напряжением других элементов подстанции должны быть не менее значений, указанных в табл.1.

1.4.8. Ошиновку разрядников на напряжение 20 кВ и выше, установленных на открытых подстанциях, следует выполнять гибким медным, алюминиевым или стальным проводом, сечение которого (по условиям короны) должно быть не менее указанного в табл.2.

Источник

Инструкция по эксплуатации ограничителей перенапряжения (ОПН)

СЛУЖБА ЭКСПЛУАТАЦИИ И РЕМОНТА ПС И ЛЭП 35-110 KB

ТИПОВАЯ ИНСТРУКЦИЯ
ПО ЭКСПЛУАТАЦИИ ОГРАНИЧИТЕЛЕЙ
ПЕРЕНАПРЯЖЕНИЯ НЕЛИНЕЙНЫХ
6 -110 KB

СОДЕРЖАНИЕ
1. Область применения
2. Общие сведения

3.Устройство и принцип действия ОПН 6-110 кВ
3.1 Устройство и принцип действия ОПН фирмы «ABB».
3.2 Устройство и принцип действия ОПН фирмы «Таврида Электрик»
3.3 Устройство и принцип действия ОПН фирмы «Raychem»

4. Монтаж ОПН 6-110 кВ

  1. Общие требования
  2. Монтаж ОПН фирмы «ABB»
  3. Монтаж ОПН фирмы «Таврида электрик»
  4. Монтаж ОПН фирмы «Raychem»

5 Техническое обслуживание ОПН 6-110 кВ
Приложения
Знание настоящей инструкции обязательно для:
– оперативного, оперативно-производственного персонала электрических сетей;
– производственного персонала групп подстанций, распредсетей, ЦРО
служб подстанций и распредсетей, электромонтеров по обслуживанию
ВЛ 6-110 кВ;
– инженерно-технического персонала СПС, СРС, СЛ,СЛИП.

1. ОБЛАСТЬ ПРИМЕНЕНИЯ.

Требования данной инструкции распространяется на ограничители перенапряжения нелинейные (далее – ОПН) 6-110 кВ, изготовленные в полимерном
корпусе производства фирм: «Raychem», «Таврида Электрик», «ABB» и др., находящиеся в эксплуатации на объектах электроэнергетической системы.

2. ОБЩИЕ СВЕДЕНИЯ.

ОПН на сегодняшний день являются одним из эффективных средств защиты оборудования электрических сетей. Данные аппараты обладают достаточно высокими
эксплуатационными свойствами и надежностью.
Нелинейные ограничители перенапряжений предназначены для использования в качестве основных средств зашиты электрооборудования станций и сетей среднего и высокого классов напряжения переменного тока промышленной частоты от коммутационных и грозовых перенапряжений. При их разработке были использованы последние технологические достижения и опыт эксплуатации ОПН в отечественной и зарубежной практике. Ограничители рекомендуется применять вместо вентильных разрядников соответствующих классов напряжения при проектировании, эксплуатации, техническом перевооружении и реконструкции электроустановок.
ОПН 6-110 кВ с полимерной изоляцией, по сравнению с вентильными разрядниками, обладают целым рядом преимуществ:

  1. варисторы, применяемые в ОПН, обладают высокой стабильностью, которая
    не изменяется в процессе длительной эксплуатации;
  2. большое быстродействие срабатывания ОПН при коммутационных и
    грозовых перенапряжениях;
  3. отличные пиковые характеристики ОПН в широком диапазоне рабочей
    температуры;
  4. применение варисторов в одно колонковом исполнении позволяет
    обеспечить особенно глубокое ограничение напряжений и, соответственно, более
    высокую надежность работы оборудования и улучшение параметров сети;
  5. уменьшение габарита и веса ОПН в 10 — 20 раз позволяет установить их
    непосредственно вблизи защищаемого оборудования;
  6. высокая механическая прочность и малая масса ОПН позволяет
    устанавливать их на ВЛ 6-110 кВ без усиления конструкции опор;
  7. ОПН в полимерном корпусе не требуют специального обслуживания, не
    повреждаются при транспортировке и хранении;
  8. малые массо-габариты ОПН позволяют легко выполнять их монтаж при
    минимальном использовании техники.

Под рабочим напряжением через ОПН протекает ток величиной доли миллиампер. Ток носит емкостной характер, вследствие чего в ОПН не выделяется активная мощность, и он может неограниченно долго находиться под рабочим напряжением. В результате ОПН не требует обслуживания и контроля параметров в процессе эксплуатации. Повышение напряжения, при появлении импульса перенапряжения, вызывает снижение активного сопротивления резисторов ОПН. Ток через ОПН возрастает до сотен ампер при появлении коммутационных перенапряжений и до тысяч ампер при воздействии грозовых перенапряжений. Резисторы ограничителя переходят в проводящее состояние и ограничивают дальнейшее нарастание перенапряжения до уровня, безопасного для изоляции защищаемого электрооборудования. Когда перенапряжение снижается, ограничитель вновь возвращается в непроводящее состояние.

Графики изменения тока и напряжения на ОПН при повышении воздействующего напряжения.

Высоколинейные резисторы объемного типа (варисторы), применяемые в ОПН, выполнены из оксидно-цинковой или металлооксидной керамики – нелинейного материала, получаемого в результате высокотемпературного обжига (до 1300 °С) специальной смеси. Смесь состоит из окиси цинка и некоторого количества оксида другого металла, например висмута, сурьмы, кобальта, марганца и т.п. Масса основной добавки составляет менее 4% массы оксида цинка. Коэффициент не линейности оксидно–цинковой керамики одного и того же образца составляет 0,02 — 0,06 и зависит от сочетания добавок к оксиду цинка и температуры обжига материала. Зависимость между напряжением, приложенным к образцу такого материала, и током в нем определяется общей для рассматриваемых материалов формулой. Коэффициент не линейности растет с увеличением значения тока, а при больших напряжениях начинает увеличиваться активная .масса составляющего тока через оксидно-цинковый нелинейный рабочий резистор (НРР).
Вольт-амперная характеристика НРР из металлооксидной керамики зависит от температуры окружающей среды: при повышении температуры остаточное напряжение уменьшается, температурный коэффициент тока и коэффициент не линейности увеличиваются. Уменьшение остаточного напряжения при коротких импульсах несколько меньше, чем при длинных, например, отношение остаточного напряжения при длительности воздействия, равной одной микросекунде, к остаточному напряжению при длительности воздействия, равной восьми микросекундам, составляет 1,07.
Параметры материала НРР в значительной степени определяют срок службы ОПН. Основное значение имеют градиент напряжения, температурный коэффициент тока, температура окружающей среды, условия теплоотдачи, приложенное напряжение. В процессе старения возрастает активная составляющая
тока и соответственно активная мощность. НРР выбирается из того или иного числа единичных дисковых резисторов, соединенных последовательно или последовательно-параллельно. Надежный электрический контакт между ними обеспечивается металлизацией их торцевых поверхностей и контактным нажатием.
При последовательном соединении единичных высоко нелинейных резисторов напряжение между ними распределяется очень неравномерно, что обуславливается не только емкостным распределением напряжения, но и различной электрической проводимостью отдельных резисторов, градиентом напряжения при заданном токе, тангенсом угла дельта диэлектрических потерь резисторов.
Градиент напряжения при гарантированной пропускной способности резистора при импульсе тока с максимальным значением 70 А и длительностью 3/8 мкс составляет 1,45-1,8 кВ/см, а тангенс диэлектрических потерь равен (или меньше) 0,09 увеличение числа последовательно соединенных резисторов уменьшает неравномерность распределения напряжения. Неравномерность проявляется в случае, когда заданное напряжение (градиент) приложено к небольшому числу единичных резисторов (ЕР); если же оно приложено к числу ЕР, в десять раз большему, то оно соответственно и распределяется на большее число объектов с уменьшением напряжения, приходящегося на каждый ЕР, с учетом активных утечек которого неравномерность снижается. Выравнивание его по высоте аппарата достигается посредством трубчатого экранного кольца, закрепляемого на верхней крышке элемента, что существенно облегчает работу НРР.
Диски из оксидно – цинковой керамики помещается в специальную термоусаживаемую трубку ( трубка полиэтиленовая радиационно – модифицированная), которая при нагревании вместе с дисками до температуры 170-180°С плотно облегает колонку из дисков, создавая продольное и поперечное давление. Продольное давление обеспечивает электрический контакт между отдельными дисками, а поперечное создает из разрозненных дисков одно конструктивное целое — колонку.
Пропускная способность НРР определяется площадью поперечного сечения ЕР и градиентом напряжения. Увеличение ее достигается увеличением диаметра дисков. Толщина диска ЕР определяется специальными расчетами, где решающее значение имеет обеспечение наибольшего теплоотвода с целью предотвращения прогорания материала диска по цепи протекания сопровождающего тока. Этот размер НРР определяется при разработке ОПН.

Читайте также:  Регистрация фонда в 2021 году пошаговая инструкция и сроки

3. УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ ОПН 6 – 110 КВ.

3.1. Устройство и принцип действия ОПН фирмы «АВВ».
ОПН фирмы «ABB» в полимерном корпусе могут состоять из одного или нескольких модулей, каждый из которых содержит одну колонку варисторов. Варисторы не обладают «кумулятивным» эффектом, т.е. их вольт-амперная характеристика не зависит от числа срабатываний ОПН. Силиконовая покрышка наносится на активную часть методом непосредственного вакуумного литья в специальной холдинговой машине. Фланцы соединены друг с другом двумя или более усиливающими элементами из стекловолокна, что придает ОПН высокие механические характеристики. Благодаря тому, что силиконовая изоляция наносится непосредственно на вариаторы, внутри нет воздуха и, как следствие, отсутствуют внутренние частичные разряды. Кроме того, улучшаются условия охлаждения варисторов, что улучшает энергопоглащающую способность ОПН.
ОПК фирмы «ABB» состоит из внешнего изолятора, выполненного из негаллогенированной силиконовой резины с концевыми фланцами и выводами, выполненными из нержавеющей стали, алюминия или меди. Внутренняя часть ОПН состоит из металлооксидных варисторов, стальных прокладок, алюминиевыхкомпонентов, стекловолоконных стяжек и арамидных волокон. Металлоксидные варисторы представляют собой агломератные «таблетки», состоящие в основном из ZnO (90%) и др. веществ (более 1%): Bi2O3, Sb2O3, NiO, Cr2O3. Металлоксидные варисторы покрыты слоем тонкого стекла ( Конструкция ОПН/ TEL

3.3 Устройство и принцип действия ОПН фирмы «Raychem»
В корпус из трекингостойкого полимера, выпускаемого по специальной технологии, помещены металлооксидные варисторы, обеспечивающие высокую энергопоглощающую способность. Подключение ОПН к сети осуществляется при помощи электродов. Волоконно-армированная структура придает ОПН дополнительную механическую прочность.

Конструкция ОПН фирмы «Raychem»

1. Металлооксидные варисторы
2. Электроды
3. Волоконно-армированная композитная структура
4. Корпус из трекингостойкого полимера

4. МОНТАЖ ОПН 6-110 KB

4.1 Общие требования

Монтаж ОПН 6-110 кВ должен производится в строгом соответствии с требованиями инструкций завода-изготовителя и указаний ГКД 34.35.512-2002. Средства защиты от перенапряжений в электроустановках 6-750 кВ. Инструкция по монтажу и эксплуатации.
После окончания монтажа проводятся приемо-сдаточные испытания ОПН в объеме согласно требованиям инструкции завода-изготовителя и ГКД 34.35.512-2002.
Перед монтажом все элементы ОПН необходимо тщательно осмотреть, причем особое внимание следует обращать на следующее:

  1. поверхности покрышек, в том числе торцы, примыкающие к фланцам, не
    должны иметь трещин, каких-либо следов удара;
  2. состояние внутренних деталей элемента проверяется слабым
    встряхиванием при проворачивании его в разные стороны под углом 20-30° от
    вертикальной оси. Наличие при этом шумов или позваниваний свидетельствует о
    повреждении внутренних деталей элемента;
  3. перед монтажом, элементы ОПН должны быть испытаны в соответствии с
    инструкцией завода-изготовителя, требованиями ПУЭ, РД 34.20.302, указаниями
    ГКД 34.35.512-2002. При монтаже используются только те элементы ОПН,
    результаты испытаний которых удовлетворяют требованиям вышеперечисленных
    НД;
  4. монтаж многоэлементных ОПН (начиная от земли) следует выполнять,
    строго соблюдая указания завода-изготовителя о размещении порядковых номеров
    элементов. Замена одних элементов другими или изменение их взаимного
    расположения в ОПН, по сравнению с предписанным заводом-изготовителем не
    допускается, за исключением случаев, оговоренных в заводских документах по
    техническому обслуживанию и эксплуатации.

После окончания монтажа все наружные металлические детали аппарата, кроме паспортных щитков, необходимо окрасит влагостойкой краской или эмалью. ОПН устанавливаются в ОРУ, ЗРУ на специальных конструкциях — стойках или на огражденных фундаментах высотой не менее 300 мм от уровня планировки ПС с учетом требований защиты от ливневых вод и высоты снежного покрова. ОПН, у которых нижняя кромка фарфорового кожуха расположена над уровнем планировки ПС на высоте не менее 2500 мм, разрешается устанавливать без постоянных ограждений. Расстояние в свету между фазами ОПН или от ОПН до заземленных или находящихся под напряжением других элементов ПС должны быть не менее значений заказанных в табл. 1.

Для ОПН-110 кВ наименьшие расстояния в свету от токоведущих частей до различных элементов СРУ должны быть:
— от токоведущих частей, от элементов оборудования и изоляции, находящихся под напряжением, до заземленных постоянных внутренних и наружных ограждений высотой не менее 2000 мм, а также стационарных межячейковых экранов и противопожарных перегородок — 600 мм;

Таблица 1 Наименьшие допустимые расстояния в свету между ОПН и токоведущими и заземленными частями оборудования ПС, а также между ОПН и постоянными ограждениями

Изоляционные расстояния, мм, для номинального напряжения, кВ

Источник



СО 153-34.37.523.11-90 Инструкция по эксплуатации средств защиты от перенапряжений

  • формат doc
  • размер 314.46 КБ
  • добавлен 30 апреля 2010 г.

СО 153-34.37.523.11-90 Инструкция по эксплуатации средств защиты от перенапряжений

«Инструкция по эксплуатации средств защиты от перенапряжений» приводится в «Указателе действующих в электроэнергетике нормативных документов на 01.07.2005 (обязательных и рекомендуемых к использованию)» ЦПТИиТО ОРГРЭС, Москва, 2005 год с обозначениями РД 34.37.523.11-90 и СО 153-34.37.523.11-90.

Разработано — Производственным объединением по наладке, совершенствованию технологии и эксплуатации электростанций и сетей «Союзтехэнерго»

Исполнители: Ф. А. Лихачев, В. В. Радченко

Утверждено: Главным техническим управлением по эксплуатации энергосистем 27.08.85 г.

Заместитель начальника К. М. Антипов

Настоящая Инструкция предназначена для персонала служб изоляции, защиты от перенапряжений и испытаний электрооборудования электростанций и электрических сетей, занимающегося эксплуатацией средств защиты от перенапряжений.

В Инструкцию внесены изменения и дополнения, учитывающие практику эксплуатации современных средств защиты от перенапряжений, требования новых и пересмотренных стандартов и технических условий на конкретные виды и типы средств защиты от перенапряжений.

С выходом настоящей Инструкции отменяется «Инструкция по выбору, монтажу и эксплуатации средств защиты от перенапряжений» (М.: Энергия, 1969).

Источник